Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Immun Ageing ; 19(1): 65, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2162386

ABSTRACT

BACKGROUND: The risk for symptomatic COVID-19 requiring hospitalization is higher in the older population. The course of the disease in hospitalised older patients may show significant variation, from mild to severe illness, ultimately leading to death in the most critical cases. The analysis of circulating biomolecules involved in mechanisms of inflammation, cell damage and innate immunity could lead to identify new biomarkers of COVID-19 severity, aimed to improve the clinical management of subjects at higher risk of severe outcomes. In a cohort of COVID-19 geriatric patients (n= 156) who required hospitalization we analysed, on-admission, a series of circulating biomarkers related to neutrophil activation (neutrophil elastase, LL-37), macrophage activation (sCD163) and cell damage (nuclear cfDNA, mithocondrial cfDNA and nuclear cfDNA integrity). The above reported biomarkers were tested for their association with in-hospital mortality and with clinical, inflammatory and routine hematological parameters. Aim of the study was to unravel prognostic parameters for risk stratification of COVID-19 patients. RESULTS: Lower n-cfDNA integrity, higher neutrophil elastase and higher sCD163 levels were significantly associated with an increased risk of in-hospital decease. Median (IQR) values observed in discharged vs. deceased patients were: 0.50 (0.30-0.72) vs. 0.33 (0.22-0.62) for n-cfDNA integrity; 94.0 (47.7-154.0) ng/ml vs. 115.7 (84.2-212.7) ng/ml for neutrophil elastase; 614.0 (370.0-821.0) ng/ml vs. 787.0 (560.0-1304.0) ng/ml for sCD163. The analysis of survival curves in patients stratified for tertiles of each biomarker showed that patients with n-cfDNA integrity < 0.32 or sCD163 in the range 492-811 ng/ml had higher risk of in-hospital decease than, respectively, patients with higher n-cfDNA integrity or lower sCD163. These associations were further confirmed in multivariate models adjusted for age, sex and outcome-related clinical variables. In these models also high levels of neutrophil elastase (>150 ng/ml) appeared to be independent predictor of in-hospital death. An additional analysis of neutrophil elastase in patients stratified for n-cfDNA integrity levels was conducted to better describe the association of the studied parameters with the outcome. CONCLUSIONS: On the whole, biomarkers of cell-free DNA integrity, neutrophil and macrophage activation might provide a valuable contribution to identify geriatric patients with high risk of COVID-19 in-hospital mortality.

2.
Immunol Res ; 70(6): 817-828, 2022 12.
Article in English | MEDLINE | ID: covidwho-2060055

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with immune dysregulation, severe respiratory failure, and multiple organ dysfunction caused by a cytokine storm involving high blood levels of ferritin and IL-18. Furthermore, there is a resemblance between COVID-19 and macrophage activation syndrome (MAS) characterized by high concentrations of soluble CD163 (sCD163) receptor and IL-18. High levels of ferritin, IL-18, and sCD163 receptor are associated with "hyperferritinemic syndrome", a family of diseases that appears to include COVID-19. In this retrospective cohort study, we tested the association and intercorrelations in the serum levels of ferritin, sCD163, and IL-18 and their impact on the prognosis of COVID-19. We analyzed data of 70 hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The levels of sCD163, ferritin, and IL-18 were measured and the correlation of these parameters with the respiratory deterioration and overall 30-day survival was assessed. Among the 70 patients, 60 survived 30 days from hospitalization. There were substantial differences between the subjects who were alive following 30 days compared to those who expired. The differences were referring to lymphocyte and leukocyte count, CRP, D-dimer, ferritin, sCD163, and IL-18. Results showed high levels of IL-18 (median, 444 pg/mL in the survival group compared with 916 pg/mL in the mortality group, p-value 8.54 × 10-2), a statistically significant rise in levels of ferritin (median, 484 ng/mL in the survival group compared with 1004 ng/mL in the mortality group p-value, 7.94 × 10-3), and an elevated value of in sCD163 (mean, 559 ng/mL in the survival group compared with 840 ng/mL in the mortality group, p-value 1.68 × 10-2). There was no significant correlation between the rise of ferritin and the levels sCD163 or IL-18. Taken together, sCD163, ferritin, and IL-18 were found to correlate with the severity of COVID-19 infection. Although these markers are associated with COVID-19 and might contribute to the cytokine storm, no intercorrelation was found among them. It cannot be excluded though that the results depend on the timing of sampling, assuming that they play distinct roles in different stages of the disease course. The data represented herein may provide clinical benefit in improving our understanding of the pathological course of the disease. Furthermore, measuring these biomarkers during the disease progression may help target them at the right time and refine the decision-making regarding the requirement for hospitalization.


Subject(s)
COVID-19 , Humans , Biomarkers , Cytokine Release Syndrome , Ferritins , Interleukin-18 , Prognosis , Retrospective Studies , SARS-CoV-2
3.
Eur J Pediatr ; 181(6): 2299-2309, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1844370

ABSTRACT

Similar to hemophagocytic lymphohistiocytosis (HLH), some patients with SARS-CoV-2 have cytokine storm. Serum soluble interleukin-2 receptor (sCD25) and soluble CD163 (sCD163) are potential diagnostic biomarkers for HLH that help in guiding its treatment. This study was the first to investigate serum sCD25 and sCD163 levels in SARS-CoV-2. Serum sCD25 and sCD163 were measured by ELISA in 29 patients with SARS-CoV-2, aged between 2 months and 16 years (13 had COVID-19 and 16 had multisystem inflammatory syndrome in children (MIS-C)), in comparison to 30 age- and sex-matched healthy control children and 10 patients with HLH. Levels of these markers were re-measured in 21 patients with SARS-CoV-2 who were followed up 3 months after recovery. Patients with SARS-CoV-2 had significantly higher serum sCD25 and sCD163 than healthy control children (P < 0.001). SARS-CoV-2 patients had significantly higher sCD25 than patients with HLH (P < 0.05). Serum sCD25 was a good differentiating marker between patients with SARS-CoV-2 and HLH. Although there was a significant decrease of serum sCD25 and sCD163 of the 21 SARS-CoV-2 patients who were followed up, these levels were still significantly higher than the healthy controls levels (P < 0.001).  Conclusion: Serum sCD25 and sCD163 levels were up-regulated in SARS-CoV-2 patients. Serum sCD25 was a good differentiating marker between SARS-CoV-2 and HLH. This initial report requires further studies, on large scales, to investigate the relationship between SARS-CoV-2 and both sCD25 and sCD163, including the disease severity and outcome. The therapeutic role of sCD25 and sCD163 antagonists should also be studied in SARS-CoV-2 patients. What is Known: • Similar to hemophagocytic lymphohistiocytosis (HLH), some patients with COVID-19 have cytokine storm due to excessive pro-inflammatory host response. • Serum soluble interleukin-2 receptor (sCD25) and soluble CD163 (sCD163) are potential diagnostic biomarkers for HLH. Monitoring of serum sCD25 and sCD163 levels can also help in guiding the treatment. What is New: • Serum sCD25 and sCD163 levels are up-regulated in patients with COVID-19, including patients presenting with multisystem inflammatory syndrome in children (MIS-C). • Serum sCD25 is a good differentiating marker between SARS-CoV-2 and HLH.


Subject(s)
COVID-19 , Interleukin-2 Receptor alpha Subunit/blood , Lymphohistiocytosis, Hemophagocytic , Antigens, CD , Antigens, Differentiation, Myelomonocytic , Biomarkers , COVID-19/complications , COVID-19/diagnosis , Child , Cytokine Release Syndrome , Humans , Infant , Lymphohistiocytosis, Hemophagocytic/diagnosis , Receptors, Cell Surface , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
4.
Front Immunol ; 13: 871592, 2022.
Article in English | MEDLINE | ID: covidwho-1809407

ABSTRACT

Background: CD163, a haptoglobin-hemoglobin scavenger receptor mostly expressed by monocytes and macrophages, is involved in the regulation of inflammatory processes. Following proteolytic cleavage after pro-inflammatory stimulation, CD163 is shed from the cell surface and its soluble form in plasma, sCD163, is a biomarker of monocyte/macrophage lineage activation.The assessment of sCD163 plasmatic levels in an early stage of the disease could have clinical utility in predicting the severity of COVID-19 pneumonia. The use of tocilizumab (monoclonal antibody anti-IL-6 receptor) in COVID-19 patients reduces lethality rate at 30 days. The aim of the study was to investigate the effect of tocilizumab on sCD163 plasmatic levels in a cohort of COVID-19 patients. Methods: In COVID-19 patients, on hospital admission (T0), after 7 days from hospitalization (T7) and after 45 days from discharge (T45) sCD163 plasmatic levels were evaluated, along with other laboratory parameters. COVID-19 patients were stratified into tocilizumab (TCZ) and non-tocilizumab (non-TCZ) groups. TCZ group was further divided into responder (R) and non-responder (NR) groups. Patients who died or required mechanical ventilation were defined as NR. As control group, healthy donors (HD) were enrolled. Results: Seventy COVID-19 patients and 47 HD were enrolled. At T0, sCD163 plasmatic levels were higher in COVID-19 patients compared to HD (p<0.0001) and the longitudinal evaluation showed a reduction in sCD163 plasmatic levels at T7 compared to T0 (p=0.0211). At T0, both TCZ and non-TCZ groups showed higher sCD163 plasmatic levels compared to HD (p<0.0001 and p=0.0147, respectively). At T7, the longitudinal evaluation showed a significant reduction in sCD163 plasmatic levels (p=0.0030) only in the TCZ group, reaching levels comparable to those of HD. Conversely, not statistically significance in non-TCZ group was observed and, at T7, a statistically significance was found comparing non-TCZ group to HD (p=0.0019). At T0, R and NR groups showed not statistically significance in sCD163 plasmatic levels and both groups showed higher levels compared to HD (p=0.0001 and p=0.0340, respectively). The longitudinal evaluation showed significant reductions in both groups (R: p=0.0356; NR: p=0.0273) independently of the outcome. After 45 days of follow-up sCD163 plasmatic levels remain stable. Conclusion: sCD163 plasmatic levels are increased in COVID-19 pneumonia and is efficiently down-regulated by tocilizumab treatment regardless of the clinical outcome.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Humans , Monocytes
5.
Front Immunol ; 11: 560381, 2020.
Article in English | MEDLINE | ID: covidwho-853933

ABSTRACT

Background: Emerging evidence indicates a potential role for monocytes in COVID-19 immunopathology. We investigated two soluble markers of monocyte activation, sCD14 and sCD163, in COVID-19 patients, with the aim of characterizing their potential role in monocyte-macrophage disease immunopathology. To the best of our knowledge, this is the first study of its kind. Methods: Fifty-nine SARS-Cov-2 positive hospitalized patients, classified according to ICU or non-ICU admission requirement, were prospectively recruited and analyzed by ELISA for levels of sCD14 and sCD163, along with other laboratory parameters, and compared to a healthy control group. Results: sCD14 and sCD163 levels were significantly higher among COVID-19 patients, independently of ICU admission requirement, compared to the control group. We found a significant correlation between sCD14 levels and other inflammatory markers, particularly Interleukin-6, in the non-ICU patients group. sCD163 showed a moderate positive correlation with the time lapsed from admission to sampling, independently of severity group. Treatment with corticoids showed an interference with sCD14 levels, whereas hydroxychloroquine and tocilizumab did not. Conclusions: Monocyte-macrophage activation markers are increased and correlate with other inflammatory markers in SARS-Cov-2 infection, in association to hospital admission. These data suggest a preponderant role for monocyte-macrophage activation in the development of immunopathology of COVID-19 patients.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Betacoronavirus , Coronavirus Infections , Lipopolysaccharide Receptors , Pandemics , Pneumonia, Viral , Receptors, Cell Surface , Adrenal Cortex Hormones/administration & dosage , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antigens, CD/blood , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/blood , Antigens, Differentiation, Myelomonocytic/immunology , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Female , Humans , Hydroxychloroquine/administration & dosage , Intensive Care Units , Interleukin-6/blood , Interleukin-6/immunology , Lipopolysaccharide Receptors/blood , Lipopolysaccharide Receptors/immunology , Macrophage Activation , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Patient Admission , Pneumonia, Viral/blood , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Receptors, Cell Surface/blood , Receptors, Cell Surface/immunology , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL